Use of Picard and Newton iteration for solving nonlinear ground water flow equations.
نویسنده
چکیده
This study examines the use of Picard and Newton iteration to solve the nonlinear, saturated ground water flow equation. Here, a simple three-node problem is used to demonstrate the convergence difficulties that can arise when solving the nonlinear, saturated ground water flow equation in both homogeneous and heterogeneous systems with and without nonlinear boundary conditions. For these cases, the characteristic types of convergence patterns are examined. Viewing these convergence patterns as orbits of an attractor in a dynamical system provides further insight. It is shown that the nonlinearity that arises from nonlinear head-dependent boundary conditions can cause more convergence difficulties than the nonlinearity that arises from flow in an unconfined aquifer. Furthermore, the effects of damping on both convergence and convergence rate are investigated. It is shown that no single strategy is effective for all problems and how understanding pitfalls and merits of several methods can be helpful in overcoming convergence difficulties. Results show that Picard iterations can be a simple and effective method for the solution of nonlinear, saturated ground water flow problems.
منابع مشابه
Multiple solutions of a nonlinear reactive transport model using least square pseudo-spectral collocation method
The recognition and the calculation of all branches of solutions of the nonlinear boundary value problems is difficult obviously. The complexity of this issue goes back to the being nonlinearity of the problem. Regarding this matter, this paper considers steady state reactive transport model which does not have exact closed-form solution and discovers existence of dual or triple solutions in so...
متن کاملTHE USE OF THE HE'S ITERATION METHOD FOR SOLVING NONLINEAR EQUATIONS USING CADNA LIBRARY
In this paper, we apply the Newton’s and He’s iteration formulas in order to solve the nonlinear algebraic equations. In this case, we use the stochastic arithmetic and the CESTAC method to validate the results. We show that the He’s iteration formula is more reliable than the Newton’s iteration formula by using the CADNA library.
متن کاملFully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations
In this article we present robust, efficient and accurate fully implicit time-stepping schemes and nonlinear solvers for systems of reaction-diffusion equations. The applications of reaction-diffusion systems is abundant in the literature, from modelling pattern formation in developmental biology to cancer research, wound healing, tissue and bone regeneration and cell motility. Therefore, it is...
متن کاملAn assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow
In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...
متن کاملStochastic Galerkin methods for the steady-state Navier-Stokes equations
We study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ground water
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2006